
AIAA-98-4160

SIMULATION OF A

F/A-18 E/F DROP MODEL
USING THE LaSRS++ FRAMEWORK

Kevin Cunningham�, P. Sean Kenney, Richard A. Leslie

David W. Geyer, Michael M. Madden�, Patricia C. Glaab

Unisys Corporation

NASA Langley Research Center

MS 169

Hampton, VA 23681

Abstract

A simulation of a 22% dynamically scaled F/A-

18 E/F Drop Model was successfully developed within

the Langley Standard Real-Time Simulation in C++

(LaSRS++) framework. Development in the LaSRS++

framework is done using object-oriented analysis, design

and programming techniques. Common software design

patterns are also used. Development using the LaSRS++

framework promotes the development of a simulation

which is inherently maintainable, extensible, reliable and

computationally efficient.

Introduction

The goals of maintainability, extensibility and relia-

bility are certainly common to all software development

efforts. The use of object-oriented analysis, design and

programming techniques to meet these goals is well es-

tablished.1–4 What is not well established is the applica-

tion of these techniques to the development of a piloted

flight simulation that must necessarily operate in a hard

real-time environment. These techniques were used to

develop a maintainable, extensible and reliable F/A-18

E/F Drop Model Simulation for the Simulation Systems

Branch at NASA Langley Research Center. Further-

more, the unusually strict demands for computational

efficiency imposed by the simulation of dynamically

scaled models were met with ease.

The F/A-18 E/F Drop Model Simulation was devel-

oped in support of the Drop Model Program at NASA

Langley Research Center. The 22% dynamically scaled

model is flight tested to support aerodynamic and flight

control research interests. As part of the test technique,5

the unpowered model is carried to its release altitude by

helicopter. After release from the helicopter, a pilot on

the ground uses down-linked drop model cockpit video

and sensor data to fly the flight profile. Commands from

the crew station, along with the down-linked data are

used by the ground based flight control computer to cal-

culate control surface actuator commands. The resulting

commands are up-linked to the model. At the end of the

flight, a parachute is deployed and the model recovered.

For the drop model to achieve an accurate represen-

tation of the full scale aircraft’s flight dynamic charac-

teristics, dynamic scaling techniques must be applied to

the model.6 The geometric and mass properties of the

model are dynamically scaled by matching the Froude

number. The same scaling technique must be applied

to the temporally dependent aspects of the flight con-

trol laws as well as the sensed data used in the control

laws. The scaling technique dictates that the model’s

time scale is inversely proportional to the square root of

�Senior Member, AIAA
Copyright c
1998 by the authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics



the geometric scale factor. Thus, for a 22% dynamically

scaled model, the control laws must run at a frame rate

over 200% faster than that of the full-scale aircraft. For

this reason, the implementation of dynamically scaled

control laws imposes unusually high demands for com-

putational efficiency.

This F/A-18 E/F Drop Model Simulation is primar-

ily used for evaluation and tuning of control laws, flight

profile planning and crew training. Additionally, the

implementation of the flight control laws used by the

simulation serve as a verification model for the Drop

Model Program’s independent implementation of the

same laws. The simulation, developed using the GNU

C++ compiler, supports pilot-in-the-loop, synchronous

real-time operations with integration rates in excess of

300 Hz on SGI Onyx systems at NASA Langley Re-

search Center.

Fundamental Concepts

The fundamental concepts behind the LaSRS++

framework7 are:

� simplification of behavior (via abstraction)

� protection of data (via encapsulation).

The use of object-oriented C++ and a few simple im-

plementation guidelines within the framework create an

environment where these concepts are not only simply

allowed, but fostered. Simplification of behavior is pri-

marily achieved by abstraction of detail. When details

are handled elsewhere, the user need not be distracted

by the complexities at hand. In object-oriented design,

this takes on a layered form. Once the desired levels

of abstraction are decided upon, these various levels of

complexity are represented by separate classes.

Classes are the fundamental building blocks in C++.

A class usually represents a single concept or physical

entity. A developer specifies the behaviors (functions)

and the data that a class will contain. An object is a

particular instance of a class. An object named “Titanic”

would likely be a particular instance of a doomed ocean-

liner class. In this regard one can think of a class as they

would think of an intrinsic data type (int, float, double).

One object that creates a second object is said to contain

that object. This is often referred to as a “has a” relation-

ship. (e.g. An F/A-18E has a flight control system.)

Inheritance is the mechanism by which the details

from one layer are added to another. The inheritances

may be chained together. Inheritance is often referred to

as an “is a” relationship (an F/A-18 is an airplane). Thus,

a class representing an F/A-18 would not contain all the

aspects that are common to all aircraft, just the aspects

that make an F/A-18 unique. Inheritance is the primary

means for the abstraction of complexity.

Polymorphism is one of the most powerful features

of object-oriented languages. It is the means by which a

behavior declared in a parent class may be defined dif-

ferently by each child class. It allows different behavior

to be realized via a common interface. This simplifies

software and promotes the use of common interfaces.

The C++ language provides a means to allow or dis-

allow a client’s access to the behaviors and data in a

class. Public access (any client has access) and private

access (no client has access) provide the two extremes

of data/function protection. A significant feature of the

LaSRS++ framework is that all data, in all classes of the

framework is private. Containment (“has a”) or inheri-

tance (“is a”) relationships are not permitted to break this

data encapsulation. If the developer of a class wishes to

allow outside access to the data in a class, accessor func-

tions with the appropriate level of protection (public or

protected) must be written to reference the data. The

data access provided may be limited to read-only or,

if required, both read and write. In this manner, the

LaSRS++ framework provides excellent data protection

from accidental corruption through the use of strong en-

capsulation.

The Framework

The F/A-18 E/F Drop Model Simulation was devel-

oped within the LaSRS++ framework. A framework is

a collection of classes which are used to build various

2
American Institute of Aeronautics and Astronautics



products. This framework is kept under strict configura-

tion control. The classes contained therein are carefully

reviewed with regard to both design and implementation.

Classes in the LaSRS++ framework7 can be divided

into two major categories. The first is very general in na-

ture and serves as a “toolbox” which contains classes for:

� filtering

� function table lookups

� vector and matrix operations

� statistical and random variable calculations

� memory management8

� input - output capabilities9

� data conversions

The second is oriented more toward simulation and

contains classes relating to:

� equations of motion

� propulsion systems

� flight control systems

� weapons systems

� aerodynamic modeling

� environmental modeling

� mass property modeling

� multi-vehicle, multi-cpu simulation10

� hardware interfacing11

� navigation systems

� trim capabilities

Using The Framework

Two classes of interest in the framework are named

Vehicle and Aircraft. These classes are shown, along

with their relationship to an F/A-18 E/F Drop Model

class in Figure 1.

Figure 1: Inheritance in action

The diagram presented in Figure 1 is a class diagram

using the Unified Modeling Language.12 It makes the

simple statement that the F/A-18 E/F Drop Model class

inherits from Aircraft which inherits from Vehicle. (An

F/A-18 E/F Drop Model “is a” Aircraft, which “is a”

Vehicle.) The Vehicle class contains data such as accel-

eration, velocity and position vectors. It also contains

functions for the calculation of these quantities. Aircraft

contains data such as angle of attack, side slip, calibrated

airspeed and functions to calculate these quantities.

The F/A-18 E/F Drop Model class need only take

responsibility for registering its unique attributes with

the Aircraft and Vehicle classes. Since the data in those

classes only allows private access, this is implemented

using in-lined mutator functions. These mutator func-

tions would typically have only protected access (only

a sub-class may use the function). The use of the C++

inline keyword plus compiler optimizations make the

use of protected mutator functions a very efficient means

of controlling access to data. In addition to defining its

attributes, the F/A-18 E/F Drop Model class must also

define its unique behaviors. In practice, this primarily

consists of a few behaviors that update the forces and

moments. The forces and moments are then registered

with the vehicle, and the inherited behavior to perform

3
American Institute of Aeronautics and Astronautics



integrations is invoked. All of the complexity associated

with integrating the state vector is hidden from the de-

veloper.

A high-level representation of several of the major

components of the F/A-18 E/F Drop Model is shown in

Figure 2. This class diagram shows the use of aggrega-

tion and inheritance from the framework. The aggrega-

tion would be verbalized as “the F/A-18 E/F Drop Model

has an F/A-18 E/F Drop Model Sensor System”, etc. The

solid black diamonds in Figure 2 indicate that the F/A-

18 E/F Drop Model class not only contains these classes

but is responsible for their creation and destruction. The

use of aggregation provides another means to logically

remove complexity and encapsulate data while model-

ing a system. In this example, the inheritance from the

framework establishes a common interface to be used by

the sub-classes. It is then the responsibility of an F/A-18

E/F Drop Model Simulation developer to provide these

details, as they could not be known at the framework

level.

Figure 2: High-Level View

4
American Institute of Aeronautics and Astronautics



Figure 3: Essentials of the Aerodynamic Model Design

An Object-Oriented Aerodynamic Model

The simulation’s aerodynamic model uses two sepa-

rate databases. One is used for an “up and away” flight

regime and the other for a “powered approach” flight

regime. Thus, it is necessary to switch between the two

databases during synchronous real-time. A class diagram

with the details of the aerodynamic model is shown in

Figure 3.

Figure 3 shows that the F/A-18 E/F Drop Model has

an F/A-18 E/F Drop Model Aero System, which is an

F/A-18 E/F Aero System. The only aspects not inher-

ited directly from the full-scale aircraft’s aerodynamic

model is F/A-18 E/F Drop Model Aero Adjustments.

These adjustments represent the differences between the

aerodynamic model and the performance of the model

being tested. The F/A-18 E/F Aero System has two aero

data lookup objects (“F18ePAAeroCoeffBuildup” and

“F18eUAAeroCoeffBuildup”). The F/A-18 E/F Aero

System acts as a “mediator” between the vehicle and

these aerodynamic coefficient build-up objects. The

F/A-18 E/F Aero System gets data from the vehicle and

passes it on to the appropriate coefficient build-up object,

instructs that object to perform its coefficient build-ups

and obtains the resulting force and moment coefficients.

These two aerodynamic coefficient build-up classes

contain the details of the aerodynamic model. The sum-

mation of the aerodynamic coefficients which contribute

to final force and moment coefficients is defined therein.

The calculation of these coefficients is performed within

the aerodynamic data lookup objects that each of the

aero coefficient build-up objects contain. The details

involved in performing the aerodynamic lookups are

grouped into logical sub-classes (e.g. longitudinal and

lateral-directional coefficients). The only complexity re-

maining is the actual data. These classes, diagramed in

Figure 3, are represented with a release number (Rel1,

Rel2). Subsequent updates to the aerodynamic data re-

sult in the creation of a new class with the appropriate

release number.

The primary goals of this architecture were to in-

crease maintainability, extensibility and overall relia-

bility. It takes no stretch of the imagination to realize

5
American Institute of Aeronautics and Astronautics



that the aerodynamic model of an aircraft undergoing

flight testing will be subject to frequent updates. New

releases of the aerodynamic model quite often are lim-

ited in scope. At best, only the data in one of the leaf

classes (the most specific classes in an inheritance hier-

archy) would be changed. The only changes that need to

be made to the software are limited to the creation of a

class representing the new release. There are no mono-

lithic data files to contend with. The source of any errors

that do occur must reside in the new class. The use of

aggregation in the design allows the model to be easily

extended. Aerodynamic models for any new aspects of

the aircraft could be easily handled as a new aggregate

of a aerodynamic coefficient build-up class. The inter-

faces would remain the same and there would simply be

another object to service. Through the use of inheritance

and aggregation, complexity is dealt with in layers and

as smaller, more manageable components which greatly

simplifies any aspect of the model.

The Mediator Design Pattern

There is much commonality in the way certain ob-

jects interact. These patterns are repeated over and over

regardless of the system being modeled. Establishing ef-

ficient and effective mechanisms for these relationships

is a problem which requires careful attention. Design

patterns are evolved, yet simple solutions to these com-

mon problems in software development.2 By using “tried

and true” design patterns, a software developer is spared

the time and expense of iterating to an efficient solution

to the problem.

Figure 4 illustrates the interdependencies that could

result when components of a flight control system share

data through direct interaction. Each class is then depen-

dent on all the other classes that it needs data from. This

creates a tightly coupled system. Any new data or be-

havior added to one class affects all the other classes that

depend on it. As a tightly coupled system grows, it tends

to take on the characteristics of a monolithic class. This

limits re-usability, hampers testability and significantly

increases the time to compile the software. The solution

to this common design problem is the Mediator Design

Pattern.

Figure 4: Class Dependencies Abound

The use of the Mediator Design Pattern rids objects

of their explicit dependencies. This greatly decouples

and simplifies a system. Figure 5 illustrates the impact

of a mediator on the system shown in Figure 4.

Figure 5: The Mediator Pattern

Figure 5 is the more simple design. It is the supe-

rior design. The aggregate classes no longer depend on

each other. In fact, they do not even depend on the me-

diator class which encapsulates them. This autonomy

greatly increases re-usability. Testability is increased in

that each class may be tested as a single unit, rather than

testing the whole system at once. Finally, compilation

times are reduced by the fact that a software change that

only affects one class will only require re-compilation of

that class, not an entire coupled system.

6
American Institute of Aeronautics and Astronautics



The use of the Mediator Design Pattern in the F/A-18

E/F Drop Model Simulation is shown in Figures 2 and

3. The F/A-18 E/F Drop Model system classes for the

aerodynamics, controls and sensors all serve in the role

of mediator. These mediator classes take the responsibil-

ity for passing data between and managing the behavior

of their component objects.

Flight Control Laws and Polymorphism

Figure 6 shows more details of the F/A-18 E/F Drop

Model Simulation flight control laws. The features to

note are the inheritance relationships from the full-scale

F/A-18 E/F classes. The behavior of the F/A-18 E/F

Drop Model control laws are for the most part directly

inherited from the full-scale implementation. However,

there are some aspects of the full-scale control laws that

are not used by the drop model.

An example of this can be found in the directional

axis control laws. The full-scale laws compute a nose

wheel steering command when the control laws are in-

structed to update. However, such a computation is

unnecessary for a drop model, as it has no landing gear.

The problem is then to be able to inherit the overall be-

havior of the control laws, while redefining these kinds

of behavioral differences. In a procedural paradigm

this would be handled in the baseline code with log-

ical branching. However, as time goes on and other

projects use the baseline functionality, this logic would

likely evolve into a maintenance nightmare. Within the

LaSRS++ framework this sort of behavioral change eas-

ily handled thru polymorphism.

The base class (with the baseline set of behaviors)

need only define a virtual (the C++ keyword which in-

vokes polymorphic behavior13, 14) function representing

the behavior. In the sub-class, the same virtual func-

tion need only be redefined with the desired behavior.

The sub-class can still inherit the fundamental behaviors

of the control laws. Only the behavioral aspects that

have been polymorphically redefined will change. Once

a polymorphic behavior is defined in the base class, it

may be easily extended an infinite number of times. Us-

ing polymorphism to extend behavior in this manner

provides infinite extensibility without creating mainte-

nance burdens. Projects other than the F/A-18 E/F Drop

Model could just as easily inherit from the base class and

redefine certain behaviors. All sub-classes would be iso-

lated from each other, while at the same time, receiving

changes made to the base class.

Figure 6: Drop Model Control Law Architecture

7
American Institute of Aeronautics and Astronautics



Conclusions

A simulation of a 22% dynamically scaled F/A-18

E/F Drop Model was successfully developed using, not

only the software, but also the architectural principles

of the Langley Standard Real-Time Simulation in C++

(LaSRS++) framework. This simulation’s architecture

makes frequent use of inheritance, aggregation, polymor-

phism and the mediator design pattern. This architecture

provides strong encapsulation of data while promoting

maintainability, extensibility, reliability and re-usability.

The high integration rates achieved by the F/A-18 E/F

Drop Model Simulation demonstrate the computational

efficiency of the LaSRS++ framework.

Acknowledgments

The authors would like to thank Dawn Idema, Sta-

cie Clark and Gus Taylor (Unisys Corporation) for their

significant design and implementation contributions to

the development of the F/A-18 E/F Drop Model Simula-

tion. Also, Mark A. Croom (Vehicle Dynamics Branch,

NASA Langley Research Center) for support, guidance

and many technical discussions relating to drop model

testing and flight dynamics.

Bibliography

[1] Grady Booch. Object-Oriented Analysis and De-

sign. Benjamin/Cummings, Redwood City, Cali-

fornia, 1994.

[2] Gamma E., Helm R., Johnson R., Vlissides J.

Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading,

Massachusetts, 1995.

[3] John Lakos. Large-Scale C++ Software Design.

Addison-Wesley, Reading, Massachusetts, 1996.

[4] Robert C. Martin. Designing Object-Oriented C++

Applications Using The Booch Method. Prentice-

Hall, Englewood Cliffs, New Jersey, 1995.

[5] Mark A. Croom, et al. Dynamic Model Testing of

the X-31 Configuration for High-Angle-of-Attack

Flight Dynamics Research. Paper Number AIAA-

93-3674 CP, August, 1993.

[6] C. H. Wolowicz, J. S. Bowman, W. P. Gilbert.

Similitude Requirements and Scaling Relationships

as Applied to Model Testing. Technical Report

NASA TP 1438, 1979.

[7] Richard A. Leslie, et al. LaSRS++ An Object-

Oriented Framework for Real-Time Simulation of

Aircraft. Paper Number AIAA-98-4529, August,

1998.

[8] David Geyer, et al. Managing Shared Memory

Spaces in an Object-Oriented Real-time Simula-

tion. Paper Number AIAA-98-4532, August, 1998.

[9] Patricia Glaab, et al. A Method to Interface Auto-

Generated Code into an Object-Oriented Simula-

tion. Paper Number AIAA-98-4531, August, 1998.

[10] Michael Madden, et al. Constructing a Multiple-

Vehicle, Multiple-CPU Using Object-Oriented

C++. Paper Number AIAA-98-4530, August, 1998.

[11] P. Sean Kenney, et al. Using Abstraction to Isolate

Hardware in an Object-Oriented Simulation. Paper

Number AIAA-98-4533, August, 1998.

[12] Terry Quatrani. Visual Modeling With Rational

Rose and UML. Addison Wesley, Reading, Mas-

sachusetts, 1998.

[13] Bruce Eckel. Thinking in C++. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1995.

[14] Bjarne Stroustrup. The C++ Programming Lan-

guage. Addison-Wesley Publishing Company,

Reading, Massachusetts, third edition, 1997.

[15] Scott Meyers. Effective C++. Addison-Wesley,

Reading, Massachusetts, second edition, 1998.

[16] Scott Meyers. More Effective C++. Addison-

Wesley, Reading, Massachusetts, 1996.

[17] Atul Saini David R. Musser. STL Tutorial and

Reference Guid. Addison-Wesley, Reading, Mas-

sachusetts, 1996.

8
American Institute of Aeronautics and Astronautics


